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Abstract
We consider the Schrödinger operatorH = (i∇+A)2 in the space L2(R

2) with a
magnetic potential A(x) = a(x̂)(−x2, x1)|x|−2, where a is an arbitrary function
on the unit circle. Our goal is to study spectral properties of the corresponding
scattering matrix S(λ), λ > 0. We obtain its stationary representation and show
that its singular part (up to compact terms) is a pseudodifferential operator of
zero order whose symbol is an explicit function of a. We deduce from this
result that the essential spectrum of S(λ) does not depend on λ and consists of
two complex conjugated and perhaps overlapping closed intervals of the unit
circle. Finally, we calculate the diagonal singularity of the scattering amplitude
(kernel of S(λ) considered as an integral operator). In particular, we show that
for all these properties only the behaviour of a potential at infinity is essential.
The preceding papers on this subject treated the case a(x̂) = const and used
the separation of variables in the Schrödinger equation in the polar coordinates.
This technique does not, of course, work for arbitrary a. From an analytical
point of view, our paper relies on some modern tools of scattering theory and
well-known properties of pseudodifferential operators.

PACS numbers: 03.65.N, 02.30.Tb, 03.65.Ge

1. Introduction

From a mathematical point of view, the famous Aharonov–Bohm effect [1, 3, 13] consists of
unusual spectral properties of the scattering matrix (SM) Sα(λ), λ > 0, for the Schrödinger
operator Hα with magnetic potential Aα(x) = α(−x2, x1)|x|−2, α ∈ R, x = (x1, x2), in the
space L2(R

2). For such potentials the Schrödinger equation admits separation of variables in
polar coordinates (r, θ), and for every fixed angular momentum m = 0,±1,±2, . . . the radial
equation

−u′′
m + ((m − α)2 − 1/4)r−2um = λum λ > 0
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can be solved in terms of the Bessel functions um(r) = r1/2I |m−α|(λ1/2r). Using the
asymptotics of these functions as r → ∞, we see that Sα(λ) has two eigenvalues eiαπ

and e−iαπ with corresponding eigenfunctions eimθ for m � α and m � α, respectively.
This is qualitatively different both from the case of short-range (satisfying the condition
O(|x|−1−ε), ε > 0, at infinity) electric and magnetic potentials and from the electric (Coulomb)
potential decaying as |x|−1. In the first case, the essential spectrum of the SM consists of only
point 1 and in the second it covers the whole unit circle (see, e.g., [16]).

Since eigenvalues and eigenfunctions of Sα(λ) are known, the spectral theorem yields
directly an explicit expression (see [13]) for the kernel of Sα(λ) considered as an integral
operator. As usual, it is singular only on the diagonal, but its singularity is quite different
from the case of short-range magnetic and electric potentials (as well as from the electric
Coulomb potential). Indeed, in the short-range case the leading singularity is given by the
Dirac function whereas for the Aharonov–Bohm potential it is a linear combination (with
coefficients depending on α) of the Dirac function and of the singular denominator understood
as the principal value.

Note also that if Hα is considered for |x| � r0 with the Dirichlet boundary condition at
|x| = r0 (see [13]), then the corresponding SM has infinitely many eigenvalues which however
accumulate at the points eiαπ and e−iαπ only. To put it differently, the essential spectrum of
such a SM consists again of the points eiαπ and e−iαπ .

In the present paper,we study the spectral properties of the SM and the diagonal singularity
of its kernel in a more general context. Actually, we suppose that, for sufficiently large |x|,

A(x) = a(x̂)(−x2, x1)|x|−2 x̂ = x/|x| (1.1)

where a is an arbitrary real C∞-function on the unit circle. For such potentials A(x) =
(A1(x),A2(x)), the magnetic field B(x) = ∂A1(x)/∂x2 − ∂A2(x)/∂x1 vanishes (for large
|x|). An arbitrary short-range potential can be added to A(x) without changing our results
significantly. In particular, only the behaviour of a potential at infinity is essential. Of course,
except for the case a(x̂) = const, for potentials (1.1) the variables in the two-dimensional
Schrödinger equation cannot be separated. Therefore, to solve the problem, we use modern
tools of scattering theory (a stationary formula for the SM in a general framework, different
resolvent estimates, etc) and some well-known properties of pseudodifferential operators
(PDO). Note that we consider the SM as a PDO on the unit circle. We try here to single out
the main ideas and to keep the presentation as simple as possible, so that technical details are
usually omitted.

In fact, we follow rather closely paper [15] where electric long-range potentials were
considered. The technique of this paper applies automatically to magnetic potentials, but the
concrete expressions for symbols of the SM and for diagonal singularities of their kernels
(if the SM are considered as integral operators) are qualitatively different for electric and
magnetic potentials decaying as |x|−1 at infinity. This also leads to a qualitative difference in
the spectral properties of the corresponding SM.

2. Main results

We consider the pair of self-adjoint operators H0 = −�,

H = (i∇ + A(x))2 x ∈ R
2

with a magnetic potential (1.1) in the space H = L2(R
2). As was noted in [10], although the

potential A(x) decays only as |x|−1 at infinity, due to the transversal gauge

〈A(x), x〉 = 0 (2.1)
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the usual wave operators W±(H,H0) exist. The scattering operator S and the SM S(λ), λ > 0
are defined in terms of these operators. Recall that, for general short- and long-range electric
and magnetic potentials, the SM is a unitary operator in the space L2(S). It is usually
considered as an integral operator, that is

(S(λ)u)(ω) =
∫

S

s(ω, ω′; λ)u(ω′) dω′.

The kernel s(ω, ω′, λ) of the SM (the scattering amplitude) is a smooth function of ω,ω′ ∈ S

for ω �= ω′ but can be very singular on the diagonal ω = ω′ (see, e.g., [16]). In particular, this
is true in the case considered.

Let us formulate our main result on the essential spectrum σess of S(λ). Set

f (ω) =
∫

S(−ω,ω)

a(θ) dθ (2.2)

where the integral is taken in the positive (counterclockwise) direction over the half-circle
between the points −ω and ω. Note that

f (ω) + f (−ω) =
∫

S

a(θ) dθ =: φ (2.3)

is the total magnetic flux.

Theorem 2.1. For all λ > 0

σess(S(λ)) = eif (S) ∪ e−if (S) (2.4)

that is, σess(S(λ)) consists of the two complex conjugated and perhaps overlapping closed
intervals of the unit circle.

We do not have any information on the detailed structure of the essential spectrum of the
SM. For example, it is an open question whether it might contain the absolutely or singularly
continuous parts.

We emphasize that the essential spectrum of S(λ) does not depend on λ. For concrete
functions a in (1.1), one can compute integral (2.2) and find σess(S(λ)) explicitly. We give
only one example.

Corollary 2.2. Let

a(x̂) = α + 〈p, x̂〉 α ∈ R p ∈ R
2. (2.5)

Then relation (2.4) holds with

f (S) = [πα − 2|p|, πα + 2|p|]. (2.6)

In particular, if a(x̂) = α, then σess(S(λ)) consists of the two points exp(±iπα) which equal
(−1)n for α = n ∈ Z.

Indeed, for function (2.5), we have that f (ω) = πα ± 2|ω × p| if ± ω can be obtained
from p̂ by rotation in the positive direction at an angle smaller than π . This yields formula
(2.6).

Next, we can describe the diagonal singularity of the scattering amplitude.

Theorem 2.3. Let S0 be the integral operator on L2(S) with kernel

s0(ω, ω′) = eif (ω)−iφ/2

(
cos(φ/2)δ(ω, ω′) + (2π)−1 sin(φ/2) PV

1

sin({ω,ω′}/2)

)
(2.7)
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where δ(ω, ω′) is the Dirac function on the unit circle, PV is the principal value and {ω,ω′}
is the oriented angle between an initial vector ω and a final vector ω′. Then

|s(ω, ω′; λ) − s0(ω, ω′)| = O(| ln |ω − ω′‖) ω − ω′ → 0.

In particular, the operator S(λ) − S0 belongs to the Hilbert–Schmidt class.

It follows from (2.2) and (2.3) that if the function a is even, then f (ω) = φ/2 for all
ω ∈ S and hence the first factor in the right-hand side of (2.7) equals 1. Thus, for an arbitrary
even a, formula (2.7) for the singular part of the SM is the same as for a constant a(x̂) = α

but the role of α is played by (2π)−1φ. If a is odd, then φ = 0 and f is also odd. In this
case s0(ω, ω′) = eif (ω)δ(ω, ω′), so that S0 is the operator of multiplication by eif (ω). Note
that s0(ω, ω′) is a real function if a is even, but this is of course wrong in the general case.

Theorem 2.3 implies

Corollary 2.4. Let ω �= ω′ and ω − ω′ → 0. Then

s(ω, ω′; λ) = exp(if (ω) − iφ/2) sin(φ/2)

2π sin({ω,ω′}/2)
+ O(| ln |ω − ω′‖).

Now we can give an explicit asymptotics of the scattering cross section

�diff(ω; ω0, λ) = 2π√
λ

|s(ω, ω0; λ)|2 ω �= ω0

for incident direction ω0 of a beam of particles and direction of observation ω.

Corollary 2.5. Let ω → ω0. Then

�diff(ω; ω0, λ) = 1

2π
√

λ

sin2(φ/2)

sin2({ω,ω0}/2)
+ O

( | ln |ω − ω0‖
|ω − ω0|

)
. (2.8)

The total cross section

�tot(ω0, λ) =
∫

S

�diff(ω; ω0, λ) dω

is finite (for all ω0 at the same time) if and only if φ ∈ 2πZ. In this case

�diff(ω; ω0, λ) = O(ln2 |ω − ω0|).

We emphasize that formula (2.8) depends on the total magnetic flux φ only. It looks quite
natural from the physics point of view. Indeed, the potential (1.1) with a(x̂) = α was chosen
in the original paper [1] essentially for phenomenological reasons. It was required that the
magnetic flux take the given value φ (determined by the current) and the magnetic field be
zero. In the general case the potential (1.1) also satisfies both these conditions. So it is not
astonishing that for potentials with asymptotics (1.1), the leading singularity of �diff(ω; ω0, λ),
which is the main quantum-mechanical observable, depends on φ only.

Note that sin({ω,ω′}/2) and sin({ω,ω0}/2) in the formulae above can be replaced by
{ω,ω′}/2 and {ω,ω0}/2, respectively. The results of theorem 2.3 and its corollaries generalize
the well-known formulae (see, e.g., [13]) for scattering on the Aharonov–Bohm potential to
the case where the function a(x̂) is not constant. Of course, in the case a(x̂) = α (then
f (ω) = πα) they reduce to these formulae.

This paper is organized as follows. In section 3, we give precise definitions of basic
objects. The structure of the SM is studied in section 4. Theorem 2.1 is proved in section 5.
Finally, in section 6 we find the diagonal singularity of the scattering amplitude (theorem 2.3).
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3. Scattering theory

Although for the pair H0 = −�,H = (i∇ + A(x))2 the usual wave operators exist, we first
treat A(x) as a long-range potential and consider wave operators

W± = W±(H,H0; J±) = s − lim
t→±∞ eiHtJ± e−iH0 t

with non-trivial ‘identifications’ J± (depending on the sign of t). This idea first appeared in [5].
The operators J± emerge naturally as PDO with symbols j±(x, ξ) constructed in terms of
approximate eigenfunctions �±(x, ξ) = eiϕ±(x,ξ) of the operator H. Substituting � = eiϕ in
the Schrödinger equation H� = |ξ |2� , we obtain the eikonal equation

|∇ϕ|2 − 2〈A,∇ϕ〉 = |ξ |2 ∇ = ∇x

for the phase function ϕ = ϕ±. Following [15], we construct approximate solutions of this
equation by explicit formulae

ϕ±(x, ξ) = 〈x, ξ〉 + �±(x, ξ) (3.1)

and

�±(x, ξ) = ∓
∫ ∞

0
(〈A(x ± tξ) − A(±tξ), ξ〉) dt = ∓

∫ ∞

0
〈A(x ± tξ), ξ〉 dt . (3.2)

Note that the last equality is a consequence of the transversal gauge condition (2.1). Then the
Schrödinger equation for �± = eiϕ± is satisfied up to a short-range term off any neighbourhood
of the direction x̂ = ∓ξ̂ . To be more precise,

((i∇ + A)2 − |ξ |2)�± = eiϕ±q± (3.3)

where

q± = |∇�±|2 − i��± − 2〈A,∇�±〉 + |A|2 + i div A. (3.4)

It follows from (1.1) and (3.2) that∣∣∂α
x ∂

β

ξ �±(x, ξ)
∣∣ � Cα,β(κ)(1 + |x|)−|α| (3.5)

and hence ∣∣∂α
x ∂

β

ξ q±(x, ξ)
∣∣ � Cα,β(κ)(1 + |x|)−m−|α| (3.6)

where m = 2, for all multi-indices α, β in the region ±〈x̂, ξ̂〉 � κ for any κ > −1. Here and
below we suppose that |ξ | belongs to a compact and disjoint from zero interval of R+. This is
possible due to the conservation of energy.

Let � be an open set in the space R
d . Recall that a PDO P : C∞

0 (�) → C∞(�) with
symbol p(ζ, y) is defined by the formula

(Pf )(ζ ) = (2π)−d/2
∫

R
d

ei〈ζ,y〉p(ζ, y)f̂ (y) dy (3.7)

where f̂ = Ff is the Fourier transform of f . Here ζ plays the role of the space variable and
y is the dual one. A symbol p(ζ, y) (or a PDO P) belongs to the Hörmander class Sn if, for
all α and β, ∣∣∂α

y ∂
β

ζ p(ζ, y)
∣∣ � Cα,β(1 + |y|)n−|α|.

We construct J± as a PDO by the formula

(J±f )(x) = (2π)−1
∫

R
2

ei〈x,ξ〉+i�± (x,ξ)σ±(〈x̂, ξ̂ 〉)f̂ (ξ) dξ (3.8)



7486 Ph Roux and D Yafaev

where the cut-off function σ± ∈ C∞ is such that σ±(τ ) = 1 near ±1 and σ±(τ ) = 0 near ∓1.
We deliberately ignore here some technical details which can be found in [15]. For example,
strictly speaking, additional cut-offs of low and high energies by a function of |ξ |2 and that of
a neighbourhood of x = 0 by a function of x should be added in (3.8) to the symbol

j±(x, ξ) = ei�±(x,ξ)σ±(〈x̂, ξ̂ 〉) (3.9)

of the PDO J±. Compared to (3.7), ξ and x play in (3.8) the roles of ζ and y, respectively.
Thus, only the operator P± = FJ ∗

±F∗ is a PDO with symbol p±(ξ, x) = j±(−x, ξ) in the
sense of definition (3.7). Nevertheless, all usual definitions and results of the PDO theory
can be directly applied to the operators (3.8). In particular, according to (3.5), the PDO J±
belongs to the class S0. Below all PDO acting on functions of x ∈ R

2 are understood in the
same sense as J±.

We note that both wave operators W±(H,H0; J±) and W±(H,H0) exist and

W±(H,H0; J±) = W±(H,H0)

(see [10, 16]). However, introduction of the auxiliary identifications J± is necessary to obtain
a representation of the SM in terms of the resolvent R(z) = (H − z)−1 of the operator H.
Since the scattering operator S = W ∗

+ W− commutes with H0, it reduces in the spectral
representation of H0 to the multiplication by the operator-function S(λ), λ > 0, acting in the
space L2(S) and known as the SM. Let us construct the standard spectral representation of the
operator H0. Let

(�0(λ)f )(ω) = 2−1/2f̂ (λ1/2ω) = 2−1/2(2π)−1
∫

R
2

e−iλ1/2〈x,ω〉f (x) dx ω ∈ S (3.10)

be, up to the numerical factor, the restriction of f̂ to the circle of radius λ1/2 and
(Uf )(λ) = �0(λ)f, f ∈ C∞

0 (R2), λ > 0. Then the operator U extends by continuity to
a unitary operator U : L2(R

2) → L2(R+; L2(S)), and the operator H0 is diagonalized by U ,
i.e., (UH0f )(λ) = λ (Uf )(λ). This implies that (USf )(λ) = S(λ)(Uf )(λ).

Let

T± = HJ± − J±H0 (3.11)

be the ‘effective perturbation’ for the triple {H0,H, J±}. We proceed from the following (see
[6, 15, 16]) stationary representation

S(λ) = −2π i�0(λ)(J ∗
+ T− − T ∗

+ R(λ + i0)T−)�∗
0(λ) (3.12)

for the SM S(λ).
To justify it, we need the following two analytical results. The first of them (the limiting

absorption principle; see, e.g., [2, 11]) can easily be obtained by the Mourre method. We use
the notation 〈x〉 for the operator of multiplication by the function 〈x〉 = (1 + |x|2)1/2.

Proposition 3.1. For any γ > 1/2 the operator-function 〈x〉−γ R(z)〈x〉−γ is continuous in
norm with respect to the parameter z in the closed complex plane cut along [0,∞) with the
exception of the point 0. In particular, the positive spectrum of H is absolutely continuous.

We also need more delicate resolvent estimates usually called propagation estimates. The
following assertion was proven in [7, 8, 12] using again the Mourre estimate [11].

Proposition 3.2. Let P± be the PDO with symbol p±(x, ξ) ∈ Sn. Suppose that the support of
p±(x, ξ) is contained in the cone ∓〈x̂, ξ̂ 〉 � ε for some ε > 0. Then the operator-functions

〈x〉γ−βP ∗
+ R(z)〈x〉−γ , 〈x〉−γ R(z)P−〈x〉γ−β γ > 1/2 β > n + 1 (3.13)
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and

〈x〉γ P ∗
+ R(z)P−〈x〉γ ∀γ (3.14)

are bounded and continuous in norm with respect to the parameter z in the region
Re z ∈ (λ0,∞), λ0 > 0, Im z � 0.

We also recall the Sobolev trace theorem.

Proposition 3.3. The operator �0(λ)〈x〉−γ : L2(R
2) → L2(S) is compact for any γ > 1/2.

4. The structure of the scattering matrix

Let us first find a convenient representation for operator (3.11). The following result follows
directly from definition (3.8), equation (3.3) and estimates (3.5), (3.6).

Proposition 4.1. The operator T± admits the decomposition T± = T
(s)
± +T

(r)
± where T

(s)
± , T

(r)
±

are, respectively, PDO with symbols

t
(s)
± (x, ξ) = −2iei�±(x,ξ)〈ξ,∇σ±(〈x̂, ξ̂ 〉)〉

= −2iei�±(x,ξ)|x|−1|ξ |(1 − 〈x̂, ξ̂ 〉2)σ ′
±(〈x̂, ξ̂ 〉) ∈ S−1 (4.1)

and t
(r)
± ∈ S−2.

We always suppose that the functions σ± in (3.8) satisfy, for some ε ∈ (0, 1/2), the
relations

σ+(τ ) = 1 for τ ∈ [−ε, 1] σ+(τ ) = 0 for τ ∈ [−1,−2ε] (4.2)

and σ−(τ ) = σ+(−τ ). Then the operators T
(s)
± satisfy the assumptions of proposition 3.2.

It follows from its assertion about the operators (3.13) that the operators 〈x〉γ (
T

(s)
+

)∗
R(λ +

i0)T
(r)
− 〈x〉γ and 〈x〉γ (

T
(r)

+
)∗

R(λ+i0)T
(s)
− 〈x〉γ are bounded for γ < 1. The boundedness of the

operator (3.14) implies that 〈x〉γ (
T

(s)
+

)∗
R(λ + i0)T

(s)
− 〈x〉γ is bounded for any γ . Finally, the

operator 〈x〉γ (
T

(r)
+

)∗
R(λ + i0)T

(r)
− 〈x〉γ is bounded for γ < 3/2 by proposition 3.1. Therefore,

the operator

Bγ (λ) = 〈x〉γ T ∗
+ R(λ + i0)T−〈x〉γ (4.3)

is bounded for any γ < 1. Hence, by proposition 3.3, the operator

�0(λ)T ∗
+ R(λ + i0)T−�∗

0(λ) = (�0(λ)〈x〉−γ )Bγ (λ)(�0(λ)〈x〉−γ )∗ γ ∈ (1/2, 1)

(4.4)

is compact. Since the operator 〈x〉J ∗
+ T

(r)
− 〈x〉 is bounded, the operator �0(λ)J ∗

+ T
(r)
− �∗

0(λ) is
also compact by proposition 3.3. Thus, we obtain

Proposition 4.2. Let

S1(λ) = −2π i�0(λ)J ∗
+ T

(s)
− �∗

0(λ). (4.5)

Then for all λ > 0 the operator S(λ) − S1(λ) is compact.

Corollary 4.3. The essential spectra of the operators S(λ) and S1(λ) are the same.

It follows (see, e.g., [16]) from definition (4.5) that, considered as an integral operator,
S1(λ) (as well as the SM S(λ) itself) has a smooth kernel s1(ω, ω′; λ), ω, ω′ ∈ S, off the
diagonal ω = ω′. Therefore its essential spectrum is determined by the diagonal singularity
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of s1(ω, ω′; λ). Actually, it is more convenient to treat S1(λ) as a PDO on the unit circle. We
fix an arbitrary point ω0 ∈ S and consider standard chart coordinates in its neighbourhood
� ⊂ S. Let �ω0 be the line (identified with R) orthogonal to ω0, and let ζ = κ(ω) be the
orthogonal projection of ω ∈ � on �ω0 . In particular, we assume that κ(ω0) = 0. We denote
by � ⊂ �ω0 the orthogonal projection of � and identify points ω ∈ � and ζ = κ(ω) ∈ �.
Let us also consider the unitary mapping Zκ : L2(�) → L2(�) defined by

(Zκu)(ζ ) = (1 − |ζ |2)−1/4u(ω). (4.6)

We shall see that the operator Sκ
1 (λ) = ZκS1(λ)Z∗

κ is a PDO defined by formula (3.7)
for d = 1 and, up to terms from the class S−1, its symbol pκ

1 (ζ, y) is an asymptotically
homogeneous function pκ

0 (ζ, y) of y of order zero. The function pκ
0 (ζ, y) is called the

principal symbol of the PDO Sκ
1 (λ). It is invariant with respect to diffeomorphisms, which

allows one to define the principal symbol of the PDO S1(λ) on the cotangent bundle of S by
the equality

p0(ω, b) = pκ
0 (ζ, y) |ω| = 1 〈ω, b〉 = 0 (4.7)

where ζ = κ(ω) and b is the orthogonal projection of y on the line �ω. Alternatively, one
can say that, for a PDO from the class Sn, the principal symbol is the full symbol, considered
modulo functions from Sn−1.

In the rest of this section, we shall find an explicit expression for the principal symbol
of S1(λ). According to definition (4.5), we have to consider first the operator G = J ∗

+ T
(s)
− .

Recall that J+ and T
(s)
− are PDO with symbols (3.8) and (4.1), respectively. Let us use the fact

(see, e.g., [4, 14]) that J ∗
+ is also a PDO with the principal symbol j+(x, ξ) and G = J ∗

+ T
(s)
−

is a PDO with the principal symbol g0(x, ξ) which equals the product of the symbols of PDO
J ∗

+ and T
(s)
− . It follows that

(Gf )(x) = (2π)−1
∫

R
2

ei〈x,ξ〉g(x, ξ)f̂ (ξ) dξ (4.8)

where g ∈ S−1 and the principal symbol

g0(x, ξ) = j+(x, ξ)t
(s)
− (x, ξ) = −2iei�(x,ξ)σ+(〈x̂, ξ̂ 〉)〈ξ,∇σ−(〈x̂, ξ̂ 〉)〉. (4.9)

Here

�(x, ξ) = �−(x, ξ) − �+(x, ξ) =
∫ ∞

−∞
〈A(x + tξ), ξ〉 dt =

∫ ∞

−∞
〈A(x̂ + t ξ̂ ), ξ̂ 〉 dt (4.10)

according to (3.2). At the last step we have used that A(x) is a homogeneous function of order
−1, so that the function �(x, ξ) is homogeneous of order 0 in both variables. Note also that

�(x, ξ) = −�(x,−ξ). (4.11)

Remark now that, due to the function ∇σ−(〈x̂, ξ̂ 〉), the symbol (4.9) equals zero on the
conormal bundle to every circle |ξ |2 = λ, i.e., g0(x, ξ) = 0 if x = tξ for some t ∈ R.
Therefore, we can use the following general result of [9] guaranteeing the existence of the
operators �0(λ)G�∗

0(λ).

Proposition 4.4. Let G ∈ S−1 be a PDO defined by formula (4.8), and let g0 be its principal
symbol. Suppose that g0(tω, λ1/2ω) = 0 for all ω ∈ S and t ∈ R. Then the operator
G(λ) = �0(λ)G�∗

0(λ) is well defined as a bounded operator in the space L2(S). Moreover,
G(λ) is a PDO on the unit sphere from the class S0 with the principal symbol given by the
absolutely convergent integral

g0(ω, b; λ) = (4π)−1λ−1/2
∫ ∞

−∞
g0(tω − λ−1/2b, λ1/2ω) dt |ω| = 1 〈ω, b〉 = 0.

(4.12)
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Let us apply this result to the operator (4.5) and calculate integral (4.12) for the
function (4.9). Under assumption (4.2) σ+(〈x̂, ξ̂ 〉) = 1 on the support of ∇σ−(〈x̂, ξ̂〉), so
that the function σ+(〈x̂, ξ̂ 〉) can be omitted in (4.9). Next we take into account that, by
definition (4.10),

�(tω − λ−1/2b, λ1/2ω) = �(−b, ω).

Since

∫ ∞

−∞

〈
ω,∇σ−

(〈
tω − λ−1/2b

|tω − λ−1/2b| , ω
〉)〉

dt =
∫ ∞

−∞

∂

∂t
σ−

(
t

(t2 + λ−1b2)1/2

)
dt

= σ−(1) − σ−(−1) = −1

we arrive at the following conclusion.

Proposition 4.5. The operator S1(λ) is a PDO on the unit sphere with the principal symbol

p0(ω, b) = ei�(−b,ω) |ω| = 1 〈ω, b〉 = 0.

We emphasize that p0(ω, b) does not depend on λ. Let us calculate the integral (4.10).
Recall that the function f was defined by formula (2.2).

Lemma 4.6. Suppose that b̂ is obtained from ω by rotation at angle ∓π/2. Then

�(b,ω) = ±f (±ω). (4.13)

Proof. By virtue of (4.11), it suffices to consider the case of the upper sign. Let ω =
(ω1, ω2), b̂ = (b̂1, b̂2) and θt = (b̂ + tω)|b̂ + tω|−1. Below we identify the points θ on the unit
circle with the angle between θ and b̂. Then tan θt = t . Since −ω1b̂2 + ω2b̂1 = 1, we have
that for the potential (1.1)

〈A(b̂ + tω), ω〉 = a(θt)(t
2 + 1)−1.

Plugging this expression into (4.10) and making the change of variables t = tan θ , we get
formula (4.13). �

Thus, we arrive at

Theorem 4.7. The operator S1(λ) is a PDO on the unit sphere with the principal symbol

p0(ω, b) = e±if (±ω) |ω| = 1 〈ω, b〉 = 0 (4.14)

if b̂ is obtained from ω by rotation at angle ±π/2.

5. The proof of theorem 1.1

We can now describe the essential spectrum of the SM. Below we need the following result
which can be checked by a direct calculation.

Lemma 5.1. Let P be a PDO on L2(R) with an asymptotically homogeneous symbol p(ζ, y)

of order zero such that p(ζ, y) = p±(ζ ) for sufficiently large ±y. Set

v(±)
ε,τ (ζ ) = ε−1/2g(ζ/ε) e±iτζ ĝ ∈ C∞

0 (R). (5.1)

Then (
Pv(±)

ε,τ

)
(ζ ) = p±(ζ )v(±)

ε,τ (ζ )

if ε ∈ (0, 1) and ετ is large enough.
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It follows from (4.7) and (4.14) that the principal symbol of the PDO Sκ
1 (λ) = ZκS1(λ)Z∗

κ

is given by

pκ
0 (ζ, y) = e−if (−ω)h0(y) + eif (ω)h0(−y) (5.2)

where h0 ∈ C∞(R), h0(y) = 1 for sufficiently large y and h0(y) = 0 for sufficiently large
−y. Note that Sκ

1 (λ) differs from the PDO Sκ
0 with full symbol (5.2) by a compact term.

Let µ(±) = e∓if (∓ω0) for some ω0 ∈ S. We shall first construct a Weyl sequence for the
point µ(±) and the operator Sκ

0 . Clearly, the functions (5.1) tend weakly to zero as ε → 0
uniformly in τ ∈ R and

∥∥v(±)
ε,τ

∥∥ = ‖g‖. Let us set

u(±)
ε (ζ ) = ϕ(ζ )v

(±)

ε,ε−2(ζ )

where ϕ ∈ C∞
0 (�) and ϕ(0) = 1. It can be easily deduced from lemma 5.1 that

lim
ε→0

∥∥Sκ
0 u(±)

ε − µ(±)u(±)
ε

∥∥ = 0. (5.3)

The same relation is of course true also for the operator Sκ
1 (λ). Since s1(ω, ω′; λ) is a smooth

function for ω �= ω′, we have that

lim
ε→0

(I − χ�)S1(λ)Z∗
κu

(±)
ε = 0 (5.4)

(χ� is the characteristic function of �). Therefore, comparing (5.3) and (5.4), we see that
Z∗

κu
(±)
ε is the Weyl sequence for the point µ(±) and the operator S1(λ). This implies that

µ(±) ∈ σess(S1(λ)) and hence, by corollary 4.3, µ(±) ∈ σess(S(λ)).
Let us prove, on the contrary, that σess(S1(λ)) is contained in the right-hand side of (2.4).

Suppose that µ0 �= e±if (±ω) for all ω ∈ S (and both signs ‘±’). Let R(µ0) be a PDO on the
unit circle with the principal symbol

ρ(ω, b) = (e±if (±ω) − µ0)
−1 |ω| = 1 〈ω, b〉 = 0 (5.5)

if b̂ is obtained from ω by rotation at angle ±π/2. Since ρ ∈ S0, the operator R(µ0) is
bounded in L2(S). Comparing (4.14 ) and (5.5), we see that the principal symbol of the
product R(µ0)(S1(λ) − µ0I) equals 1. It follows that

R(µ0)(S1(λ) − µ0I) = I + K (5.6)

where K is a compact operator on L2(S). Now suppose that there exists a sequence un such
that

‖un‖ = 1 w − lim
n→∞ un = 0 lim

n→∞ ‖S1(λ)un − µ0un‖ = 0. (5.7)

Using (5.6), we get the estimate

‖un‖ � ‖R(µ0)‖‖S1(λ)un − µ0un‖ + ‖Kun‖
which contradicts (5.7). This concludes the proof of theorem 2.1.

6. The diagonal singularity of the scattering amplitude

Our final goal is to find explicitly the leading diagonal singularity of the kernel s(ω, ω′; λ) of
the SM S(λ). To this end, we need to construct better approximate solutions of the Schrödinger
equation than those of section 3, using additionally (see [15, 16]) the transport equation. Let
the functions ϕ±,�± and q± be defined by equalities (3.1), (3.2) and (3.4), respectively. Set

g±(x, ξ) = 1 ∓ 2−1i
∫ ∞

0
q±(x ± tξ, ξ) dt
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and �±(x, ξ) = eiϕ±(x,ξ)g±(x, ξ). Then equation (3.3) is satisfied with the corresponding
functions q± obeying estimates (3.6) for m = 3. Let now J± be the PDO with symbol (cf (3.9))

j±(x, ξ) = ei�±(x,ξ)g±(x, ξ)σ±(〈x̂, ξ̂ 〉) (6.1)

and let T± be the operator (3.11). Then proposition 4.1 is true with t
(r)
± ∈ S−3. Of course,

representation (3.12) for the SM S(λ) remains valid for this choice of J±. Using propositions
3.1 and 3.2, we can show that now the operator (4.3) is bounded for any γ < 3/2. It follows
from (3.10) that the kernel of the operator (4.4) equals

s̃(ω, ω′; λ) = 2−1(2π)−2(Bγ (λ)uω′(λ), uω(λ)) γ ∈ (1, 3/2)

where uω(x; λ) = 〈x〉−γ eiλ1/2〈x,ω〉. Since, for γ > 1, these functions are continuous in the
space L2(R

2) with respect to ω ∈ S, the kernel s̃(ω, ω′; λ) is a continuous function of ω

and ω′. Quite similarly, the continuity of the kernel of the operator �0(λ)J ∗
+ T

(r)
− �∗

0(λ) follows
directly from the boundedness of the operator 〈x〉3/2J ∗

+ T
(r)
− 〈x〉3/2. Thus, we obtain

Proposition 6.1. Let J± be the PDO with symbol (6.1), and let S1(λ) be the operator (4.5).
Then for all λ > 0 the operator S(λ) − S1(λ) has continuous kernel.

Hence, to prove theorem 2.3, it remains to find the diagonal singularity of the operator
S1(λ). As in the previous section, we consider first the operator Sκ

1 (λ) = ZκS1(λ)Z∗
κ acting

on functions from the class C∞
0 (�),� ⊂ R. Since∫ ∞

0
eiyζ dy = πδ(ζ ) + iPVζ−1

the kernel of the operator Sκ
0 with symbol (5.2) equals (up to smooth terms)

sκ
0 (ζ, ζ ′) = (2π)−1

∫ ∞

−∞
ei(ζ−ζ ′)ypκ

0 (ζ, y) dy = 2−1(eif (ω) + e−if (−ω)
)
δ(ζ − ζ ′)

+ (2π i)−1(eif (ω) − e−if (−ω)
)

PV(ζ − ζ ′)−1. (6.2)

The symbol pκ
1 (ζ, y) − pκ

0 (ζ, y) of the operator Sκ
1 (λ) − Sκ

0 belongs to the class S−1 and
therefore its kernel is bounded by | ln |ζ − ζ ′‖. This implies that

sκ
1 (ζ, ζ ′; λ) = sκ

0 (ζ, ζ ′) + O(| ln |ζ − ζ ′‖). (6.3)

Next, we remark that, according to (4.6), the kernels of the operators S1(λ) and Sκ
1 (λ) are

related by the equality

s1(ω, ω′; λ) = sκ
1 (ζ, ζ ′; λ)(1 − |ζ |2)1/4(1 − |ζ ′|2)1/4 ω,ω′ ∈ �.

Making this change of variables in (6.2) and using (2.3), we obtain the kernel (2.7). Finally,
we take into account estimate (6.3) and proposition 6.1. This proves theorem 2.3.
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